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We have generalized the exact solution of the Riemann problem in special relativistic
hydrodynamics (Martı́ & Müller 1994) for arbitrary tangential flow velocities. The
solution is obtained by solving the jump conditions across shocks plus an ordinary
differential equation arising from the self-similarity condition along rarefaction waves,
in a similar way as in purely normal flow. The dependence of the solution on the
tangential velocities is analysed, and the impact of this result on the development of
multi-dimensional relativistic hydrodynamic codes (of Godunov type) is discussed.

1. Introduction
The decay of a discontinuity separating two constant initial states (Riemann problem)

has played a very important role in the development of numerical hydrodynamic codes
in classical (Newtonian) hydrodynamics following the pioneering work of Godunov
(1959). Nowadays, most modern high-resolution shock-capturing methods (LeVeque
1992) are based on the exact or approximate solution of Riemann problems between
adjacent numerical cells and the development of efficient Riemann solvers has become
a research field in numerical analysis in its own right (see e.g. the book by Toro 1997).

Riemann solvers began to be introduced in numerical relativistic hydrodynamics at
the beginning of the nineties (Martı́, Ibáñez & Miralles 1991). At present, the use of
high-resolution shock-capturing methods based on Riemann solvers is considered the
best strategy to solve the equations of relativistic hydrodynamics in nuclear physics
(heavy ion collisions) and astrophysics (stellar core collapse, supernova explosions,
extragalactic jets, gamma-ray bursts). This has caused a rapid development of Rie-
mann solvers for both special and general relativistic hydrodynamics (see e.g. the
reviews by Ibáñez & Martı́ 1999; Martı́ & Müller 1999).

In a previous paper (Martı́ & Müller 1994, referred to as Paper I in what follows),
we derived the analytical solution of the Riemann problem for an ideal gas in
special relativistic hydrodynamics for initial states where the flow is normal to the
initial discontinuity. This solution has proven to be a useful for (i) the generation of
analytical solutions to test relativistic hydrodynamic codes, and (ii) the development
of numerical hydrodynamic codes based on an exact Riemann solver (e.g. Martı́ &
Müller 1996; Wen, Panaitescu & Laguna 1997). Because the solution only holds for
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flows which are normal to the initial discontinuity, numerical simulations based on
the exact Riemann solver of Paper I are restricted to one-dimensional flows. Balsara
(1994) and Dai & Woodward (1997) have circumvented this restriction at the price of
constructing multi-dimensional Godunov schemes using a Riemann solver based on
the two-shock approximation where the rarefaction wave is treated as a shock wave.
An iterative relativistic nonlinear Riemann solver that takes into account the effects
of non-vanishing tangential velocity components has already been implemented by
Falle & Komissarov (1996) for Riemann problems involving two strong rarefactions.
Finally, we note that the effect of the tangential velocity on the properties of simple
waves and shocks has usually been ignored in relativistic hydrodynamics, because it is
always possible to choose a reference frame in which the tangential velocity vanishes
on both sides of the simple wave or shock. In the case of a Riemann problem this
reference frame does not exist. The general solution cannot be constructed in terms
of the solution of the purely normal flow case and by means of a single Lorentz
transformation.

In the following we derive the exact solution of a Riemann problem in Minkowski
space–time with arbitrary tangential velocities. The solution can be implemented in
multi-dimensional special relativistic hydrodynamic codes based on directional split-
ting, because it allows the computation of the numerical fluxes at every zone interface.
Furthermore, according to recent work by Pons et al. (1998), who solve the equations
of general relativistic hydrodynamics using special relativistic Riemann solvers, this
exact solution can also be implemented in general relativistic hydrodynamic codes.
The exact solution also allows one to test the accuracy of other approximate Riemann
solvers and codes.

In this paper we closely follow the structure and notation used in Paper I, where
one can also find the basic references for the theory of relativistic simple waves and
shocks, first discussed by Taub (1948). Two key references in the theory of relativistic
fluids are the review by Taub (1978) and the book by Anile (1989). The main idea
behind the solution of a Riemann problem (defined by two constant initial states,
L and R, to the left and right of their common contact surface) is that the self-
similarity of the flow through rarefaction waves and the Rankine–Hugoniot relations
across shocks allow one to connect the intermediate states I∗ (I = L, R) with their
corresponding initial states, I . The analytical solution of the Riemann problem in
classical hydrodynamics (see e.g. Courant & Friedrichs 1948) rests on the fact that
the normal velocity in the intermediate states, vnI∗ , can be written as a function of the
pressure pI∗ in that state (and the flow conditions in state I). Thus, once pI∗ is known,
vnI∗ and all other unknown state quantities of I∗ can be calculated. In order to obtain
the pressure pI∗ one uses the jump conditions across the contact discontinuity, which
are given by

pL∗ = pR∗(= p∗), (1.1)

vnL∗(p∗) = vnR∗(p∗). (1.2)

Equation (1.2) is an implicit algebraic equation in p∗ and can be solved by means of
an iterative method. The function vnI∗(p∗) is constructed by using the relations across
the corresponding wave connecting the states I and I∗.

In the case of relativistic hydrodynamics the same procedure can be followed, the
major difference with classical hydrodynamics stemming from the role of tangential
velocities. While in the classical case the decay of the initial discontinuity does
not depend on the tangential velocity (which is constant across shock waves and
rarefactions), in relativistic calculations the components of the flow velocity are
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coupled through the presence of the Lorentz factor in the equations. In addition, the
specific enthalpy also couples with the tangential velocities, which becomes important
in the thermodynamically ultrarelativistic regime.

The structure of the paper is the following. First, in § 2 we present the equations of
relativistic hydrodynamics for a perfect fluid in three spatial dimensions. In § 3 and § 4
we summarize the properties of the flow across rarefaction waves and shocks, respec-
tively, and explain how to obtain the pressure and velocities behind the corresponding
waves as a function of the state ahead the waves. In § 5 we combine the results from
the two previous sections to solve the Riemann problem. Finally, in § 6 we discuss the
implementation of the solution in numerical relativistic hydrodynamics. Throughout
the paper we will recover the corresponding purely normal flow expressions whenever
it is of interest.

2. The equations of relativistic hydrodynamics
Let Jµ and Tµν (µ, ν = 0, 1, 2, 3) be the components of the density current and the

energy-momentum tensor of a perfect fluid, respectively:

Jµ = ρuµ, (2.1)

Tµν = ρhuµuν + pηµν , (2.2)

where ρ denotes the proper rest-mass density, p the pressure, h = 1 + ε + p/ρ the
specific enthalpy, ε is the specific internal energy and uµ is the four-velocity of the
fluid, satisfying the normalization condition

uµuµ = −1 (2.3)

(throughout this paper, we will use the summation convention over repeated indices
and units in which the speed of light is set to unity). In Cartesian coordinates,
xµ = (t, x, y, z), the Minkowski metric tensor ηµν is given by

ηµν = diag(−1, 1, 1, 1). (2.4)

The evolution of a relativistic fluid is determined by the conservation equation of
rest mass (continuity equation) and energy-momentum

Jµ,µ = 0, (2.5)

Tµν
,µ = 0, (2.6)

where ,µ stands for the partial derivative with respect to coordinate xµ. The above
system is closed by an equation of state (EOS) which we shall assume as given in the
form p = p(ρ, ε).

The normalization condition of the velocity (2.3) leads to

uµ = W (1, vx, vy, vz), (2.7)

where W , the Lorentz factor, is

W = (1− v2)−1/2 (2.8)

and

v2 = (vx)2 + (vy)2 + (vz)2. (2.9)

The equations of relativistic hydrodynamics admit a conservative formulation which
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has been exploited in the last decade to implement high-resolution shock-capturing
methods. In Minkowski space–time the equations in this formulation read

U ,t + F (i)
,i = 0, (2.10)

where U and F (i)(U ) (i = 1, 2, 3) are, respectively, the vectors of conserved variables
and fluxes:

U = (D, S1, S2, S3, τ)T , (2.11)

F (i) = (Dvi, S1vi + pδ1i, S2vi + pδ2i, S3vi + pδ3i, S i − Dvi)T . (2.12)

The conserved variables (the rest-mass density, D, the momentum density, Si, and the
energy density τ) are defined in terms of the primitive variables, (ρ, vi, ε), according to

D = ρW, Si = ρhW 2vi, τ = ρhW 2 − p− D. (2.13)

System (2.10) is closed by means of an EOS that we shall assume as given in the
form

p = p(ρ, ε). (2.14)

The sound speed, cs, is then defined by

hc2
s =

∂p

∂ρ

∣∣∣∣
s

, (2.15)

where s is the specific entropy.
In the case of an ideal gas with constant adiabatic exponent, γ, that we have

considered in all the tests shown in this paper, the equation of state is simply

p = (γ − 1)ρε. (2.16)

The hyperbolic character of the equations of relativistic hydrodynamics for causal
equations of state and their eigenstructure are well known (e.g. Anile 1989). The
complex dependence of the characteristic fields on the tangential velocity in arbitrary
(i.e. non-comoving) frames, which is explicitly known (e.g. Donat et al. 1998), strongly
affects the eigensystem and determines the properties of the waves.

3. Relation between the normal flow velocity and the pressure behind
relativistic rarefaction waves

Rarefaction waves are simple waves in which the pressure and the density of a
fluid element decreases when crossing them. Choosing the surface of discontinuity to
be normal to the x-axis, rarefaction waves would be self-similar solutions of the flow
equations depending only the combination ξ = x/t. On discarding all the terms with
y and z derivatives in equations (2.10) and substituting the derivatives of x and t in
terms of the derivatives of ξ, the system reads

(vx−ξ)
dρ

dξ
+{ρW 2vx(vx−ξ)+ρ}dv

x

dξ
+ρW 2vy(vx−ξ)

dvy

dξ
+ρW 2vz(vx−ξ)

dvz

dξ
= 0, (3.1)

ρhW 2(vx − ξ)
dvx

dξ
+ (1− vxξ)

dp

dξ
= 0, (3.2)

ρhW 2(vx − ξ)
dvy

dξ
− vyξ dp

dξ
= 0, (3.3)

ρhW 2(vx − ξ)
dvz

dξ
− vzξ dp

dξ
= 0. (3.4)
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Equation (3.1) comes from the equation of continuity. The remaining equations come
from the momentum conservation. Equations (3.3)–(3.4) reflect the expected result: if
the tangential velocities are zero in the chosen state, no tangential flow will develop
inside the rarefaction. Finally, instead of considering the conservation of energy, we
use the conservation of entropy along fluid lines (following the same reasoning as in
Paper I) which provides a relation between dp/dξ, dρ/dξ and dh/dξ

dp

dξ
= hc2

s

dρ

dξ
= ρ

dh

dξ
. (3.5)

Non-trivial similarity solutions exist only if the determinant of system (3.1)–(3.5)
vanish. This leads to the condition

ξ =
vx(1− c2

s )± cs
√

(1− v2)[1− v2c2
s − (vx)2(1− c2

s )]

1− v2c2
s

, (3.6)

the plus and minus sign corresponding to rarefaction waves propagating to the left
R← and right R→, respectively. It is important to note that the two solutions for
ξ correspond to the maximum and minimum eigenvalues of the Jacobian matrix
associated with the fluxes F (x)(U ) (see e.g. Donat et al. 1998), generalizing the result
found for a vanishing tangential velocity in Paper I (equation (32)).

After some manipulation, the system (3.1)–(3.5) can be reduced to just one ordinary
differential equation (ODE) and two algebraic conditions:

ρhW 2(vx − ξ)dvx + (1− ξvx)dp = 0, (3.7)

hWvy = constant, (3.8)

hWvz = constant, (3.9)

with ξ constrained by (3.6). From equations (3.8) and (3.9) it follows that
vy/vz = constant, i.e. the tangential velocity does not change direction along
rarefaction waves and it is only allowed to change its absolute value. Notice that,
in a kinematical sense, the Newtonian limit (vi � 1) leads to W = 1, but equations
(3.8) and (3.9) do not reduce to the classical limit vy,z = constant, because the specific
enthalpy still couples the tangential velocities. Thus, even for slow or moderately
relativistic flows (W ≈ 1), the Riemann solution presented in this paper must be
employed for thermodynamically relativistic situations (h > 1). The same result can
be deduced from the Rankine–Hugoniot relations for shock waves (see the next
section).

Using (3.6), the ODE (3.7) can be rewritten as

dvx

dp
= ± 1

ρhW 2cs

1√
1 + g(ξ±, vx, vt)

, (3.10)

where vt =
√

(vy)2 + (vz)2 is the absolute value of the tangential velocity and

g(ξ±, vx, vt) =
(vt)2(ξ2± − 1)

(1− ξ±vx)2
. (3.11)

The sign of ξ± corresponds to the sign chosen in (3.6). In the limit of zero tangential
velocities, vt = 0, the constants in (3.8), (3.9) are zero and the function g does not
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contribute. In this limit and in case of an ideal-gas EOS one has

W 2dvx = ± cs
γp

dp = ±cs
ρ

dρ, (3.12)

recovering expression (30) in Paper I.
Considering that in a Riemann problem the state ahead of the rarefaction wave

is known, the integration of (3.10) allows one to connect the states ahead (a) and
behind (b) the rarefaction wave. Moreover, using (3.6), the EOS, and the following
relation obtained from the constraint hWvt = constant:

vtb = haWav
t
a

{
1− (vxb )2

h2
b + (haWavta)

2

}1/2

, (3.13)

the ODE can be integrated, the solution being a function of pb only. This can be
stated in compact form as

vxb = Ra

(pb). (3.14)

Function Ra

(p) is shown in figure 1, for different values of the tangential velocity

vt in state a, the various branches of the curves corresponding to rarefaction waves
propagating towards or away from a. Rarefaction waves move towards (away from)
a, if the pressure inside the rarefaction is smaller (larger) than pa. In a Riemann
problem the state a is ahead of the wave and only those branches corresponding
to waves propagating towards a in figure 1 must be considered. Moreover, one can
discriminate between waves propagating towards the left and right by taking into
account that the initial left (right) state can only be reached by a wave propagating
towards the left (right). The presence of a tangential velocity in the limiting state
restricts the value of the normal velocity within the rarefaction wave to smaller values
as is clearly seen from figure 1. Once the pressure in the post-wave state has been
obtained, the corresponding tangential velocity follows from (3.13) (see figure 1b).

4. Relation between post-shock flow velocities and pressure for relativistic
shock waves

The Rankine–Hugoniot conditions relate the states on both sides of a shock and
are based on the continuity of the mass flux and the energy-momentum flux across
shocks. Their relativistic version was first obtained by Taub (1948) (see also Taub
1978 and Königl 1980).

If Σ is a hyper-surface in Minkowski space–time across which ρ, uµ and Tµν are
discontinuous, the relativistic Rankine–Hugoniot conditions are given by

[ρuµ]nµ = 0, (4.1)

[Tµν]nν = 0, (4.2)

where nµ is the unit normal to Σ, and where we have used the notation

[F] = Fa − Fb, (4.3)

Fa and Fb being the boundary values of F on the two sides of Σ.
Considering Σ as normal to the x-axis, the unitarity of nν allows one to write it as

nν = Ws(Vs, 1, 0, 0), (4.4)

where Vs is interpreted as the coordinate velocity of the hyper-surface that defines
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Figure 1. Loci of states which can be connected with a given state a by means of relativistic
rarefaction waves propagating to the left (R←) and to the right (R→) and moving towards or away
from a. (a) Pressure versus vx; (b) tangential velocity versus vx. Solutions for different values of the
tangential velocity vt = 0, 0.5, 0.9, 0.953 correspond to solid, dashed, dashed-dotted and dotted lines,
respectively. The state a is characterized by pa = 0.6, ρa = 1.0, and vxa = −0.3. An ideal-gas EOS
with γ = 5/3 was assumed.

the position of the shock wave and Ws is the Lorentz factor of the shock,

Ws =
1√

1− V 2
s

. (4.5)

Equation (4.1) allows one to introduce the invariant mass flux across the shock:

j ≡WsDa(Vs − vxa ) = WsDb(Vs − vxb ). (4.6)

According to our definition, j is positive for shocks propagating to the right. Note
that our convention differs from that of both Landau & Lifshitz (1987) and Courant
& Friedrichs (1948), but is the same as in Paper I.

Next, the Rankine–Hugoniot conditions (4.1), (4.2) can be written in terms of the
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conserved quantities D, Sj and τ, and of the mass flux as follows:

[vx] = − j

Ws

[
1

D

]
, (4.7)

[p] =
j

Ws

[
Sx

D

]
, (4.8)[

Sy

D

]
= 0, (4.9)[

Sz

D

]
= 0, (4.10)

[vxp] =
j

Ws

[ τ
D

]
. (4.11)

We note that in deriving equations (4.7)–(4.11) we have made use of the fact that the
mass flux is non-zero across a shock. The conditions across a tangential discontinuity
imply continuous pressure and normal velocity (by setting j = 0 in equations (4.7),
(4.8) and (4.11)), and an arbitrary jump in the tangential velocity.

Equations (4.9) and (4.10) imply that the quantity hWvy,z is constant across a shock
wave and, hence, that the orientation of the tangential velocity does not change. The
latter result also holds for rarefaction waves (see §3). Equations (4.7), (4.8) and (4.11)
are formally identical to the corresponding equations in Paper I (equations (47)–(49))
and can be manipulated in the same way to obtain vxb as a function of pb, j and Vs.
Using the relation Sx = (τ+ p+ D)vx, and after some algebra, one finds

vxb =

(
haWav

x
a +

Ws(pb − pa)
j

)(
haWa + (pb − pa)

(
Wsv

x
a

j
+

1

ρaWa

))−1

. (4.12)

This expression looks like that obtained for vanishing tangential velocity, but its
presence is hidden within the Lorentz factor in state a, Wa. From (4.9) and (4.10)
expressions for vyb and vzb can be derived:

v
y,z
b = haWav

y,z
a

[
1− (vxb )2

h2
b + (haWav

y,z
a )2

]1/2

. (4.13)

The final step is to express j and Vs as a function of the post-shock pressure. From
the definition of the mass flux we obtain

V±s =
ρ2
aW

2
a v

x
a ± |j|

√
j2 + ρ2

aW
2
a (1− vxa 2)

ρ2
aW

2
a + j2

, (4.14)

where V+
s (V−s ) corresponds to shocks propagating to the right (left).

The Taub adiabat (Thorne 1973), which relates (only) thermodynamic quantities on
both sides of the shock, and the EOS can be used to derive the desired expressions.
The Taub adiabat, the relativistic version of the Hugoniot adiabat, is obtained by
multiplying (4.2) first by (huµ)a and subsequently by (huµ)b, and by summing the
resulting expressions. After some algebra one finds

[h2] =

(
hb

ρb
+
ha

ρa

)
[p]. (4.15)

In the general case, the above nonlinear equation must be solved together with the
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EOS to obtain the post-shock enthalpy as a function of pb. In the case of the ideal-gas
EOS with constant adiabatic index, the post-shock density ρb can be easily eliminated
and the Taub adiabat can be rewritten in the form (see Paper I)

h2
b

(
1 +

(γ − 1)(pa − pb)
γpb

)
− (γ − 1)(pa − pb)

γpb
hb +

ha(pa − pb)
ρa

− h2
a = 0 , (4.16)

which is a quadratic equation for the post-shock enthalpy hb as a function of pb. One
of the two roots is always negative and must be discarded as a physical solution.

Next multiplying (4.2) by nµ and using the definition of the relativistic mass flux
(4.6) one obtains

j2 =
−[p]

[h/ρ]
, (4.17)

which after using the EOS to eliminate ρb and inserting the physical solution of (4.15)
gives the square of the mass flux j2 as a function of pb.

Using the positive (negative) root of j2 for shock waves propagating towards the
right (left), equation (4.17) allows one to obtain the desired relation between the
post-shock normal velocity vxb and the post-shock pressure pb. In a compact way the
relation reads

vxb =Sa

(pb). (4.18)

The functionSa

(p) is shown in figure 2 for several values of the tangential velocity

vt in state a. Its various branches correspond to shock waves propagating towards
or away from a. In order to select the relevant branch of the function Sa


(p) (figure
2) the same argumentation as in the case of rarefaction waves can be used (see § 3).
When vxb is known, (4.13) can be used to determine vy and vz in the post-shock state.

5. The solution of the Riemann problem with arbitrary tangential velocities
The decay of an initial discontinuity gives rise, in general, to three elementary

nonlinear waves (see e.g. Landau & Lifshitz 1987). Two of them can be shocks
or rarefaction waves, one moving towards the initial left-hand state and the other
towards the initial right-hand state. Between them, two new states appear, namely L∗
and R∗, separated from each other by the third wave, which is a contact discontinuity
moving along with the fluid. Across the contact discontinuity pressure and normal
velocity are constant, while the density and the tangential velocity exhibit a jump.
Accordingly, the time evolution of a Riemann problem can be represented as

I → LW← L∗ C R∗ W→ R, (5.1)

where W and C denote a simple wave (shock or rarefaction) and a contact disconti-
nuity, respectively. The arrows (←/→) indicate the direction (left/right) from which
fluid elements enter the corresponding wave.

As in the Newtonian case, the compressive character of shock waves (density and
pressure rise across the shock) allows us to discriminate between shocks (S) and
rarefaction waves (R):

W← (→) =

{ R← (→), pb 6 pa
S← (→), pb > pa,

(5.2)

where p is the pressure and subscripts a and b denote quantities ahead of and behind
the wave. For the Riemann problem a ≡ L(R) and b ≡ L∗(R∗) for W← and W→,
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Figure 2. Loci of states which can be connected with a given state a by means of relativistic
shock waves propagating to the left (S←) and to the right (S→) and moving towards or away
from a. (a) Pressure versus vx; (b) tangential velocity versus vx. Solutions for different values of the
tangential velocity vt = 0, 0.5, 0.8, 0.865 correspond to solid, dashed, dashed-dotted and dotted lines,
respectively. The state a is characterized by pa = 0.25, ρa = 1.0, and vxa = −0.5. An ideal-gas EOS
with γ = 5/3 was assumed.

respectively. Thus, the possible types of decay of an initial discontinuity can be
reduced to

(a) I → LS← L∗ C R∗ S→ R pL < pL∗ = pR∗ > pR, (5.3)

(b) I → LS← L∗ C R∗ R→ R pL < pL∗ = pR∗ 6 pR, (5.4)

(c) I → L R← L∗ C R∗ R→ R pL > pL∗ = pR∗ 6 pR. (5.5)

The solution of the Riemann problem consists in finding the intermediate states,
L∗ and R∗, as well as the positions of the waves separating the four states (which only
depend on L, L∗, R∗ and R). The functions W→ and W← allow one to determine the
functions vxR∗(p) and vxL∗(p), respectively. The pressure p∗ and the flow velocity vx∗ in
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vtL vtR ρL∗ ρR∗ p∗ vx∗ Vs ξh ξt

0 0 0.0916 10.4 18.6 0.960 0.987 −0.816 +0.668
0 0.90 0.151 14.6 42.8 0.913 0.973 −0.816 +0.379
0 0.99 0.289 43.6 127.0 0.767 0.927 −0.816 −0.132

0.90 0 0.00583 3.44 0.189 0.328 0.452 −0.525 +0.308
0.90 0.90 0.0149 4.46 0.904 0.319 0.445 −0.525 +0.282
0.90 0.99 0.0572 7.83 8.48 0.292 0.484 −0.525 +0.197

0.99 0 0.00199 1.91 0.0316 0.099 0.208 −0.196 +0.096
0.99 0.90 0.0038 2.90 0.0927 0.098 0.153 −0.196 +0.094
0.99 0.99 0.0129 4.29 0.706 0.095 0.140 −0.196 +0.085

Table 1. Solution of the relativistic Riemann problem at t = 0.4 with initial data pL = 103, ρL = 1.0,
vxL = 0, pR = 10−2, ρR = 1.0 and vxR = 0 for nine different combinations of tangential velocities in
the left (vtL) and right (vtR) initial state. An ideal-gas EOS with γ = 5/3 was assumed. The various
quantities in the table are: the density in the intermediate state to the left (ρL∗) and right (ρR∗) of the
contact discontinuity, the pressure in the intermediate state (p∗), the flow speed in the intermediate
state (vx∗ ), the speed of the shock wave (Vs), and the velocities of the head (ξh) and tail (ξt) of the
rarefaction wave.

the intermediate states are then given by the condition

vxR∗(p) = vxL∗(p) = vx∗ . (5.6)

When p∗ and vx∗ have been obtained the remaining quantities can be computed.
The EOS gives the specific internal energy and the remaining state variables of
the intermediate state I∗ can be calculated using the relations between I∗ and the
respective initial state I given through the corresponding wave. In particular, the
tangential velocities can be calculated from (3.8)–(3.9) for rarefaction waves and
from the Rankine–Hugoniot jump conditions (4.9)–(4.10) for shock waves. Notice
that the solution of the Riemann problem depends on the modulus of vt, but
not on the direction of the tangential velocity. Figure 3 shows the solution of a
particular Riemann problem (Sod 1978) for different values of the tangential velocity
vy = 0, 0.5, 0.9, 0.99. The crossing point of any two lines in figure 3(a) gives the
pressure and the normal velocity in the intermediate states. The range of possible
solutions in the (p, vx)-plane is marked by the shaded region. Whereas the pressure in
the intermediate state can take any value between pL and pR , the normal flow velocity
can be arbitrarily close to zero in the case of an extremely relativistic tangential flow.
The values of the tangential velocity in the states L∗ and R∗ are obtained from the
value of the corresponding functions at vx in figure 3(b).

To study the influence of tangential velocities on the solution to a Riemann problem,
we have calculated the solution of a standard test involving the propagation of a
relativistic blast wave produced by a large jump in the initial pressure distribution
(see Martı́ & Müller 1999) for different combinations of vtL and vtR . The initial data
are pL = 103, ρL = 1, vxL = 0; pR = 10−2, ρR = 1, vxR = 0 and the nine possible
combinations of vtL,R = 0, 0.9, 0.99. The results are given in figure 4 and table 1.

The speeds of the waves propagating to the left and right, respectively, tend to
zero in the limit of vtL,R → 1. This result is easily deduced from (3.6) which gives
the velocities of the head (ξh) and tail (ξt) of the rarefaction wave, and from (4.14)
which gives the shock speed (Vs). These three velocities tend to the normal velocity
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Figure 3. Graphical solution in the (p, vx)-plane (a) and in the (vt, vx)-plane (b) of the relativistic
Riemann problem with initial data pL = 1.0, ρL = 1.0, vxL = 0; pR = 0.1, ρR = 0.125 and vxR = 0
for different values of the tangential velocity vt = 0, 0.5, 0.9, 0.999, represented by solid, dashed,
dashed-dotted and dotted lines, respectively. An ideal-gas EOS with γ = 1.4 was assumed. The
crossing point of any two lines in (a) gives the pressure and the normal velocity in the intermediate
states. The value of the tangential velocity in the states L∗ and R∗ is obtained from the value of the
corresponding functions at vx in (b), and I0 gives the solution for vanishing tangential velocity. The
range of possible solutions is given by the shaded region in (a).

ahead of the wave (vxa ) when the corresponding tangential velocity (vta) tends to

vtmax =
√

1− (vxa )2.
Although the structure of the solution remains the same (left-propagating rarefac-

tion wave, right-propagating blast wave) the values in the constant intermediate states
change by a large amount. The results show (see figure 4 and table 1) that ξh remains
constant as long as vtL is constant. The value of ξh only depends on the left-hand state,
and decreases with increasing vtL. The pressure in the intermediate state, p∗, increases
with increasing vtR due to the larger effective inertia of the right-hand state (because
of the increase of the Lorentz factor of the right-hand state). The velocity of the
shock is determined by the competing effects of an increased p∗ and the larger inertia
of the right state. The shape of the function Ra


(p) (see figure 1) and its dependence
on vtL shows that both p∗ and vx∗ decrease with increasing vtL. On the other hand, as



Exact solution of the relativistic Riemann problem 137

p/1000
ρ/25

1.2

1.0

0.8

0.6

0.4

0.2

0

–0.2
1.2

1.0

0.8

0.6

0.4

0.2

–0.2
1.2

1.0

0.8

0.6

0.4

0.2

–0.2
–0.5 0 0.5 –0.5 0 0.5

v

0

0

Figure 4. Analytical pressure (dashed), density (solid) and flow velocity (dotted) profiles at t = 0.4
for the relativistic Riemann problem with initial data pL = 103, ρL = 1.0, vxL = 0; pR = 10−2, ρR = 1.0
and vxR = 0, varying the values of the tangential velocities. From left to right, vtR = 0, 0.9, 0.99 and
from top to bottom vtL = 0, 0.9, 0.99. An ideal-gas EOS with γ = 5/3 was assumed.

a change in vtL does not alter the thermodynamic state, the flow evolution across the
rarefaction wave is along the same adiabat for any value of vtL. This explains why ρL∗
gets smaller with increasing vtL (consistently with the decrease of pressure). Thus, the
net effect of tangential velocities on rarefaction waves is to evolve further along the
adiabat, and to reach smaller intermediate pressure values.

6. Conclusions
We have obtained the exact solution of the Riemann problem in special relativistic

hydrodynamics with arbitrary tangential velocities. Unlike in Newtonian hydrodynam-
ics, tangential velocities are coupled with the rest of variables through the Lorentz
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factor, present in all terms in all equations. It strongly affects the solution, especially
for ultra-relativistic tangential flows. The specific enthalpy acts as a coupling factor,
too. It modifies the solution in thermodynamically relativistic situations (energy den-
sity and pressure comparable to or larger than the proper rest-mass density) even in
slow flows.

Our solution has interesting practical applications. First, it can be used to check the
different approximate relativistic Riemann solvers developed by various authors in the
past decade, and to test multi-dimensional hydrodynamic codes based on directional
splitting. Second, it can be used to construct multi-dimensional relativistic Godunov-
type methods. The latter project is currently in progress and will be reported elsewhere.
Finally, using the procedure described by Pons et al. (1998) the exact solution can be
used as a building block in a general relativistic hydrodynamic code.

The computational cost of the exact Riemann solver derived above is comparable
to the one presented by Martı́ & Müller (1994) which is valid for purely normal
flows. Hence, when our exact Riemann solver is applied to multi-dimensional flow
problems, the difference in efficiency with respect to most linearized Riemann solvers
is reduced.
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